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Abstract This paper investigates the stabilizing effect of
process damping at low cutting speeds for regenerative
machine tool vibrations of milling processes. The process
damping is induced by a velocity-dependent cutting force
model, which takes into account that the actual cutting
velocity is different from the nominal one during machine
tool vibrations. The chip thickness and the cutting force
are calculated according to the direction of the actual cut-
ting velocity. This results in an additional damping term
in the governing delay-differential equation, which is time-
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Excellence Program of the Ministry of Human Capacities. This
work was supported by the Hungarian National Science Founda-
tion under grant OTKA-K105433. The research leading to these
results has received funding from the European Research Coun-
cil under the European Union’s Seventh Framework Programme
(FP/2007-2013) / ERC Advanced Grant Agreement n. 340889.

� Tamás G. Molnár
molnar@mm.bme.hu

Tamás Insperger
insperger@mm.bme.hu

Dániel Bachrathy
bachrathy@mm.bme.hu
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periodic for milling and inversely proportional to the cut-
ting speed. In the literature, this term is often assumed to
be constant and is considered to improve stability prop-
erties at low spindle speeds. In this paper, it is shown
that the velocity-dependent cutting force model captures
the improvement in the low-speed stability only for turn-
ing operations and milling with large radial immersion,
while it results in a negative process damping term for
low-immersion milling. Consequently, an extended process
damping model is needed to explain the low-speed stability
improvement for low radial immersion milling.

Keywords Metal cutting · Milling · Machine tool chatter ·
Cutting force · Process damping

1 Introduction

Improving the productivity and the accuracy of metal cut-
ting operations is of high importance in manufacturing
technology. One important barrier of increasing the achiev-
able material removal rate and machined surface quality is
the occurrence of harmful vibrations known as machine tool
chatter. Modeling the dynamics of machine tool vibrations
is therefore an active field of research.

The first models that succeeded in describing the onset
of chatter appeared in the 1950s when Tobias [1] and
Tlusty [2] introduced the theory of regenerative machine
tool vibrations. This concept uses delay-differential equa-
tions to describe the regeneration of the waviness of the
machined surface during the consecutive cuts. The stability
analysis of the delay-differential equations gives the so-
called stability lobe diagrams (or stability charts), which
identify the chatter-free technological parameter regions in
the plane of the spindle speed and the depth of cut. These
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diagrams help the machinist in selecting the desired techno-
logical parameters associated with optimal material removal
rate without experiencing machine tool vibrations.

According to experimental results [3–10], the stability
boundaries (or stability lobes) shift toward higher depths
of cut at low spindle speeds resulting in a larger stable (or
chatter-free) region. In this article, we refer to this phe-
nomenon as low-speed stability improvement. For the exper-
imental data verifying the low-speed stability improvement,
the reader is referred to [3–10]. Most mechanical models of
metal cutting dedicate the low-speed stability improvement
to an additional dissipative force during cutting, which is
inversely proportional to the spindle speed. This additional
term is often called as process damping [3–15]. The process
damping is often explained by the contact between the tool’s
flank face and the wavy surface of the workpiece [3–6, 8–
12, 15] or by introducing velocity-dependent cutting force
models [4, 14]. Another possible explanation for the low-
speed stability improvement phenomenon is the so-called
short regenerative effect [16, 17], which dedicates the sta-
bility improvement to the distribution of the cutting force
along the rake face.

A widely accepted model to explain the origin of the
process damping term is a velocity-dependent cutting force
model, which is described in [4, 14] for orthogonal cut-
ting. Namely, it is taken into account that the actual cutting
velocity is different from the nominal cutting velocity dur-
ing machine tool vibrations. Therefore, the thickness of the
chip is calculated according to the direction of the actual
cutting velocity instead of the nominal one. This results in a
velocity-dependent chip thickness expression, which deter-
mines the magnitude of the cutting-force components. The
model also involves velocity-dependent projections of the
cutting force into tangential and feed components according
to the direction of the actual cutting velocity. The velocity-
dependent chip thickness expression and the cutting force
projections result in a process damping force in the model of
cutting. In this paper, we refer to this as velocity-dependent
cutting force model, and we extend this model to milling
operations, especially for low radial immersion ones. The
velocity-dependent chip thickness expression for milling
has already been derived in [18]. Hence, we use the results
of [18] for the chip thickness and apply the method of [4, 14]
to compute the components of the cutting force for milling
operations.

The rest of the paper is organized as follows. As a
motivation, Section 2 demonstrates the effect of process
damping for turning operations. Section 3 introduces the
single-degree-of-freedom mechanical model of milling, and
gives expressions for the cutting velocity, the chip thick-
ness, and the cutting force in the presence of machine tool
vibrations. The linearized equation of motion is derived in
Section 4, and the corresponding stability lobe diagrams are

computed in Section 5. Section 6 gives a geometric illustra-
tion of the direction of the arising process damping force.
Finally, conclusions are drawn in Section 7.

2 Motivation

The most common way of modeling the low-speed stability
improvement phenomenon is adding a damping term (the
so-called process damping) to the governing equation of the
cutting process, where the damping is inversely proportional
to the spindle speed. This model is presented for turning
operations in [14], see Eqs. (4.21)–(4.22). The correspond-
ing dimensionless equation of tool motion can be written in
the form

ξ ′′(t) + 2ζ ξ ′(t) + ξ(t) = p (ξ(t − τ) − ξ(t)) − pτCξ ′(t) ,

(1)

where p is the dimensionless chip width, and τ is the
regenerative delay, which is inversely proportional to the
dimensionless spindle speed � as τ = 2π/�. Parameter ζ

is the damping ratio of the dominant vibration mode of the
machining system, parameter C is the dimensionless pro-
cess damping coefficient, and the last term in Eq. 1 is the
process damping term.

The stability boundaries of Eq. 1, which separate the
chatter-free technological parameter regions from those
with machine tool chatter, are given by [19]

�(ψ) = 2πω(ψ)

ψ
,

p(ψ) = − 2ζω(ψ)

Cψ + sin ψ
,

ω(ψ) = −ζ
1 − cos ψ

Cψ + sin ψ
+

√
ζ 2

(
1 − cos ψ

Cψ + sin ψ

)2

+ 1 .

(2)

Here, ω denotes the approximate angular frequency of chat-
ter and ωτ =: ψ ∈ [0, ∞) is the regenerative phase
shift between the waves on the undulated machined surface
created by the tool during chatter.

The corresponding stability lobe diagram is shown in
Fig. 1 for ζ = 0.02 and C = 0.003. The stability bound-
aries shift upwards at small spindle speeds in the physically
meaningful half-plane p > 0, while the stable region shrinks
for p < 0. Although negative chip width (p < 0) is
physically meaningless in turning operations, it becomes
important for milling. The stability boundaries of up-milling
processes originate in the stability lobes of turning with pos-
itive chip width (p > 0), whereas those of down-milling
come from the lobes of turning with negative chip width
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Fig. 1 Stability lobe diagram of turning operations with (solid line)
and without (dashed line) process damping

(p < 0) [20]. That is, we get qualitatively the same lobes
for up-milling with a large number of cutting teeth as for
turning with p > 0. Similarly, the lobes of turning in the
negative half-plane p < 0 are valid for down-milling with a
large number of cutting teeth.

The phenomenon shown in Fig. 1 can be explained by
the fact that the sign of the process damping term in Eq. 1
depends also on the sign of the chip width p. Therefore,
special care must be taken to get an exact description of
the process damping term when introducing it for milling
operations. The physical explanation of low-speed stability
improvement should be associated with a positive damping
term, otherwise stability decreases at low speeds. Motivated
by Fig. 1, hereinafter we investigate the sign of process
damping for a milling model with velocity-dependent cut-
ting force expression.

3 Mechanical model of milling

Consider the single-degree-of-freedom mechanical model
of milling shown in Fig. 2.

The motion of the workpiece relative to the cutting tool is
described by the general coordinate x as a function of time
t . The motion is governed by the second-order differential
equation

mẍ(t) + cẋ(t) + kx(t) = −Fx(t) , (3)

where m, c, and k are the modal mass, damping, and stiff-
ness parameters, respectively, corresponding to the domi-
nant vibration mode of the machine tool-workpiece system.
Here, Fx denotes the x-directional component of the cutting
force acting on the mill. In order to model the cutting force

on the right-hand side, first we derive expressions for the
velocity of the cutting edges and for the chip thickness.

3.1 Velocity of the cutting edges

Consider an N-fluted milling tool of radius R rotating with
angular velocity �. The angular position of the j th tooth of
the mill is given by

ϕ̃j (t) = �t + (j − 1)
2π

N
, (4)

j = 1, 2, ..., N , see Fig. 3a for rake angle αr.
In the absence of vibrations, the velocity of the j th tooth

tip is

ṽj (t) =
⎡
⎣−R� cos ϕ̃j (t)

R� sin ϕ̃j (t)

0

⎤
⎦ , (5)

provided that the feed velocity is negligible compared to the
nominal cutting speed ṽj (t) = |ṽj (t)| ≡ R�.

From this point on, tilde indicates quantities related to
the nominal cutting velocity ṽj (t). Symbols without tilde
are associated with the actual cutting velocity vj (t) of the
j th tooth, where the vibration velocity ẋ(t) of the workpiece
is also taken into account, cf. Fig. 3a. The relative velocity
between the tool and the workpiece therefore becomes

vj (t) =
⎡
⎣−R� cos ϕ̃j (t) − ẋ(t)

R� sin ϕ̃j (t)

0

⎤
⎦ =

⎡
⎣−vj (t) cos ϕj (t)

vj (t) sin ϕj (t)

0

⎤
⎦ ,

(6)

where the feed velocity is neglected compared to R�. That
is, the magnitude of the velocity changes from ṽj (t) ≡ R�

to

vj (t) =
√(

R� cos ϕ̃j (t) + ẋ(t)
)2 + (

R� sin ϕ̃j (t)
)2

, (7)

and its instantaneous direction is given by ϕj (t) instead
of the nominal ϕ̃j (t), satisfying

cos ϕj (t) = R� cos ϕ̃j (t) + ẋ(t)√(
R� cos ϕ̃j (t) + ẋ(t)

)2 + (
R� sin ϕ̃j (t)

)2
,

sin ϕj (t) = R� sin ϕ̃j (t)√(
R� cos ϕ̃j (t) + ẋ(t)

)2 + (
R� sin ϕ̃j (t)

)2
.

(8)

A key point of this analysis is that the tangential and the
radial directions are defined based on the cutting velocity.
The nominal tangential and the nominal radial directions are
parallel and perpendicular to the nominal cutting velocity
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Fig. 2
Single-degree-of-freedom
mechanical model of milling

ṽj (t), respectively. These directions are given by the unit
vectors t̃j (t) and r̃j (t). Similarly, in the presence of
machine tool vibrations, the actual tangential and radial
directions are associated with the actual cutting velocity
vj (t) and are assigned by the unit vectors tj (t) and rj (t).
The above vectors are of form

t̃j (t) = − ṽj (t)

ṽj (t)
=

⎡
⎣ cos ϕ̃j (t)

− sin ϕ̃j (t)

0

⎤
⎦ ,

r̃j (t) = k × t̃j (t) =
⎡
⎣sin ϕ̃j (t)

cos ϕ̃j (t)

0

⎤
⎦ ,

tj (t) = −vj (t)

vj (t)
=

⎡
⎣ cos ϕj (t)

− sin ϕj (t)

0

⎤
⎦ ,

rj (t) = k × tj (t) =
⎡
⎣sin ϕj (t)

cos ϕj (t)

0

⎤
⎦ , (9)

where k is the z-directional unit vector and × indicates cross
product.

3.2 Chip thickness expression

Consider a milling operation with nominal feed per tooth
fz. According to the theory of regenerative machine tool
vibrations, when chatter occurs, the actual feed per tooth is
modified by the actual position x(t) of the workpiece and
its position x(t − τ) at the previous cut. That is, the actual
feed per tooth is given by the feed vector

f(t) =
⎡
⎣fz + x(t) − x(t − τ)

0
0

⎤
⎦ , (10)

where τ is the regenerative delay or, equivalently, the tooth-
passing period: τ = 2π/(N�).

The chip thickness is given by the radial component of
the feed vector, see Fig. 3b. If the nominal cutting velocity

is used for reference as in standard models [21–26], then
the chip thickness can be given as the projection of the feed
vector to the nominal radial direction r̃j (t) as [20]

h̃j (t) = f(t) · r̃j (t) = (fz + x(t) − x(t − τ)) sin ϕ̃j (t) ,

(11)

where · indicates scalar product. Alternatively, if the depen-
dence of the velocity of the j th tooth tip on the vibration
velocity ẋ(t) is taken into account [18], then a velocity-
dependent chip thickness can be defined as

hj (t) = f(t) · rj (t) = (fz + x(t) − x(t − τ)) sin ϕj (t) ,

(12)

in which ϕj (t) depends on ẋ(t) through Eq. 8. Note that it is
a widely accepted concept [14] to define the chip thickness
in the direction perpendicular to the actual cutting velocity
(given by Eq. 12) instead of the direction toward the center
of the mill (given by Eq. 11). Changes in the cutting velocity
modify the cutting direction and hence the effective chip
thickness. This concept is a possible explanation of the low-
speed stability improvement for turning [14]. In this paper,
we generalized this model from turning to milling.

3.3 Projections of the cutting force

Let us decompose the cutting force Fj (t) acting on the
j th tooth into actual tangential and radial components
Fj,t(t) and Fj,r(t), respectively, cf. Fig. 3c. These cutting-
force components are functions of the chip thickness hj (t)

according to the cutting force characteristics. In this paper,
we investigate the well-known power law characteristics,
which relates the cutting force magnitude to the qth power
of the chip thickness:

Fj,t(t) = gj (t)Ktaph
q
j (t)tj (t) ,

Fj,r(t) = gj (t)Kraph
q
j (t)rj (t) , (13)
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a b c

Fig. 3 Components of the velocity of the j th tooth tip (a); relation of the chip thickness and the feed per tooth (b); projection of the cutting force
to tangential and radial directions (c)

where Kt and Kr are tangential and radial cutting-force
coefficients, and ap is the axial depth of cut. Eq. 13 yields
a linear cutting force characteristics for q = 1 and implies
the widely-used three-quarter rule for q = 3/4. Note that
the angle between the radial cutting-force component Fj,r(t)

and the cutting force Fj (t) is assumed to be constant, γ =
arctan(Kt/Kr), independently of time and of the vibration
velocity ẋ(t).

In Eq. 13, the coefficient gj (t) is a screen function, which
gives 1 if the j th tooth is currently engaged in cutting and 0
otherwise:

gj (t) =
{

1 if ϕen < (ϕ̃j (t) mod 2π) < ϕex ,

0 otherwise,
(14)

where mod is the modulo function, whereas ϕen and ϕex

denote the angular positions where the teeth enter and exit
the workpiece. Given the radial immersion ae and the tool
diameter D = 2R, these angles can be expressed in the form

ϕen = 0 , ϕex = arccos

(
1 − 2ae

D

)
for up-milling,

ϕen = arccos

(
2ae

D
− 1

)
, ϕex = π for down-milling.

(15)

We can calculate the x-directional component of the cut-
ting force from the tangential and the radial components by
a scalar product with the x-directional unit vector i. Using
Eqs. 9, 12, and 13, and summing the forces on each tooth of
the mill, we obtain

Fx(t) =
N∑

j=1

(
Fj,t(t) · i + Fj,r(t) · i)

=
N∑

j=1

gj (t)ap

(
Kt cos ϕj (t) + Kr sin ϕj (t)

)

× sinq ϕj (t) (fz + x(t) − x(t − τ))q . (16)

Equations 3 and 16 form a nonlinear delay-differential
equation with time-periodic coefficients. Notice that the
equation is nonlinear even for a linear cutting force char-
acteristics (q = 1), since the angle ϕj (t) used for pro-
jecting the chip thickness and the cutting-force components
depends on the vibration velocity ẋ(t) according to Eq. 8.
We will analyze the effect of this velocity dependency on
the linear stability properties.

4 Linearized equation of motion

We assume that Eq. 3 with 16 has a τ -periodic particu-
lar solution (forced vibration) xp(t) = xp(t + τ), which
is associated with the chatter-free motion. This solution
satisfies

mẍp(t) + cẋp(t) + kxp(t)=−
N∑

j=1

gj (t)apf
q
z

×
(
Kt cos ϕj (t)

∣∣
ẋp

+Kr sin ϕj (t)
∣∣
ẋp

)
sinq ϕj (t)

∣∣
ẋp

,

(17)

where ẋp in the lower index stands for the substitution
ẋ(t) = ẋp(t). Equation 17 is a nonlinear nonhomogeneous
ODE with τ -periodic coefficients.

Machine tool vibrations correspond to the loss of stability
of the periodic solution xp(t). In what follows, we analyze
the stability of this periodic solution without determining
xp(t) itself, since we assume that in the parameter region
under investigation |ẋp(t)| � RΩ and can be neglected.
For more details about the behavior of the periodic solu-
tion, the reader is referred to [18]. Now, we linearize Eq. 3
with 16 around the periodic solution xp(t). From Eq. 8, the
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trigonometric terms in Eq. 16 and their derivatives with
respect to x and ẋ can be obtained in the form

cos ϕj (t)
∣∣
ẋp

≈ cos ϕ̃j (t) , sin ϕj (t)
∣∣
ẋp

≈ sin ϕ̃j (t) ,

∂ cos ϕj (t)

∂x

∣∣∣∣
ẋp

= 0 ,
∂ sin ϕj (t)

∂x

∣∣∣∣
ẋp

= 0 ,

∂ cos ϕj (t)

∂ẋ

∣∣∣∣
ẋp

≈ 1

R�
sin2 ϕ̃j (t) ,

∂ sin ϕj (t)

∂ẋ

∣∣∣∣
ẋp

≈ − 1

R�
sin ϕ̃j (t) cos ϕ̃j (t) ,

∂
(
cos ϕj (t) sinq ϕj (t)

)
∂ẋ

∣∣∣∣∣
ẋp

≈ 1

R�
sin2 ϕ̃j (t) sinq ϕ̃j (t)

+ cos ϕ̃j (t)q sinq−1 ϕ̃j (t)

(
− 1

R�
sin ϕ̃j (t) cos ϕ̃j (t)

)
,

∂ sinq+1 ϕj (t)

∂ẋ

∣∣∣∣∣
ẋp

≈ (q + 1) sinq ϕ̃j (t)

×
(

− 1

R�
sin ϕ̃j (t) cos ϕ̃j (t)

)
,

(18)

where the vibration velocity ẋp(t) was neglected compared
to the nominal cutting speed component R� cos ϕ̃j (t) to
simplify the analysis. From Eqs. 16 and 18, the correspond-
ing derivatives of the cutting force become

∂Fx(t)

∂x

∣∣∣∣
ẋp

=
N∑

j=1

gj (t)ap

(
Kt cos ϕ̃j (t) + Kr sin ϕ̃j (t)

)

× sinq ϕ̃j (t)qf
q−1
z ,

∂Fx(t)

∂ẋ

∣∣∣∣
ẋp

=
N∑

j=1

gj (t)ap

(
Kt

(
sin2 ϕ̃j (t) − q cos2 ϕ̃j (t)

)

−Kr(1 + q) sin ϕ̃j (t) cos ϕ̃j (t)

)
sinq ϕ̃j (t)

f
q
z

R�
.

(19)

Considering small perturbations ξ(t) around the periodic
solution xp(t), Eq. 3 with 16 can be linearized as

mξ̈(t) + cξ̇ (t) + kξ(t)

= − ∂Fx(t)

∂x

∣∣∣∣
ẋp

(ξ(t) − ξ(t − τ)) − ∂Fx(t)

∂ẋ

∣∣∣∣
ẋp

ξ̇ (t) .

(20)

Using Eq. 19, and dividing by the modal mass m, one
obtains the linear equation of motion in the form

ξ̈ (t) + 2ζωnξ̇ (t) + ω2
nξ(t)

= − HG1(t)
(
ξ(t) − ξ(t − τ)

) − H
fz

R�
G2(t)ξ̇ (t) , (21)

where ωn = √
k/m is the natural angular frequency, ζ =

c/(2mωn) is the damping ratio, H = Krapqf
q−1
z /m is the

specific cutting-force coefficient, and G1(t) and G2(t) are
the following τ -periodic coefficients:

G1(t) =
N∑

j=1

gj (t)

(
Kt

Kr
cos ϕ̃j (t) + sin ϕ̃j (t)

)
sinq ϕ̃j (t) ,

G2(t) =
N∑

j=1

gj (t)

(
Kt

Kr

(
1

q
sin2 ϕ̃j (t) − cos2 ϕ̃j (t)

)

−1 + q

q
sin ϕ̃j (t) cos ϕ̃j (t)

)
sinq ϕ̃j (t) . (22)

For a linear cutting force model (q = 1), these expressions
simplify to

G1(t) =
N∑

j=1

gj (t)

(
Kt

Kr
cos ϕ̃j (t) + sin ϕ̃j (t)

)
sin ϕ̃j (t) ,

G2(t) =
N∑

j=1

gj (t)

(
− Kt

Kr
cos

(
2ϕ̃j (t)

) − sin
(
2ϕ̃j (t)

) )

× sin ϕ̃j (t) . (23)

Equation 21 is a linear delay-differential equation, which
includes a periodically varying stiffness (associated with
G1(t)) and a periodically varying damping (associated with
G2(t)). The time-periodic damping is a new term compared
to standard milling models [21–26]. By omitting this term,
Eq. 21 reduces to the governing equation of milling models
without velocity-dependent projections of the chip thick-
ness and the cutting force. The time-periodic damping is
inversely proportional to the nominal cutting speed R�. If
G2(t) were a positive constant, then this term would pro-
vide an additional damping for low spindle speeds, which
is known as the process damping effect [3–6, 10, 14]. Note
that G2(t) is actually time periodic and, as will be shown in
Section 5, may become negative.

In Section 5, we investigate the time-periodic coeffi-
cient G2(t) and its effects on the stability lobe diagrams of
milling. We compare the results to those derived for turning
operations. Substituting G1(t) ≡ 1 and G2(t) ≡ Kt/(qKr)

into Eq. 21 gives the case of turning processes, for which the
process damping effect was analyzed in [4, 14] with q = 1.
The case G1(t) ≡ 1, G2(t) ≡ Kt/(qKr) occurs for N = 1,
ϕ̃j (t) ≡ π/2, and gj (t) ≡ 1. That is, the special case of
turning can be investigated by considering a single tooth
permanently in cut at 90◦ angular position.

In order to reduce the number of parameters, let us write
Eq. 21 in dimensionless form by introducing the dimension-
less time t̂ = ωnt , the dimensionless angular velocity �̂ =
�/ωn, and the dimensionless delay τ̂ = ωnτ = 2π/(N�̂).
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The derivative with respect to t̂ is indicated by prime and
satisfies ξ̇ (t) = ωnξ

′ (t̂). After dropping the hat, we get

ξ ′′(t) + 2ζ ξ ′(t) + ξ(t)

= − pG1(t)
(
ξ(t) − ξ(t − τ)

)
− pτρG2(t)ξ

′(t) , (24)

where p = H/ω2
n is the dimensionless axial depth of cut,

and ρ = fzN/(2Rπ) is the dimensionless feed per tooth.
Note that substituting ρ = 0 reduces Eq. 24 to the govern-
ing equation of milling models without process damping,
whereas the substitution G1(t) ≡ 1, ρG2(t) ≡ C yields
Eq. 1 of turning.

5 Process damping coefficient and stability charts

The stability of Eq. 24 was analyzed using the semi-
discretization method (for more details, see [20]). Here, we
restrict ourselves to linear stability analysis. Analyzing the
global behavior of the system is out of scope of this paper.
For bifurcation and global stability analysis of milling pro-
cesses, the reader is referred to [27]. Note that apart from
semi-discretization, there exist several other approaches for
computing the linear stability charts of milling, see e.g. the
multi frequency solution [28, 29], the Chebyshev colloca-
tion [30, 31], the homotopy perturbation method [32], or the
multi-mode approach [33].

Figure 4 presents the stability lobe diagrams for milling
with a four-fluted tool (N = 4), damping ratio ζ = 0.02,
cutting-force ratio Kr/Kt = 0.3, and cutting-force exponent
q = 3/4. During semi-discretization, the regenerative delay
was resolved by 150 intervals and the charts were com-
puted on a 600 × 300 grid in the plane (�, p). The stability
lobe diagrams are presented for nine different radial immer-
sion ratios: up-milling with ae/D = 0.02, 0.2, 0.6, and
0.8, full-immersion milling, and down-milling with ae/D =
0.7, 0.5, 0.1, and 0.02. For each case, two stability charts
were computed with ρ = 0 and ρ = 0.01. When ρ = 0,
the time-periodic damping in Eq. 24 vanishes and we get the
stability lobe diagrams of standard milling models without
considering velocity-dependent chip thickness expressions
and cutting force projections. In this case, the lower enve-
lope of the stability lobes is a horizontal straight line, it is
independent of the angular velocity �. When ρ = 0.01,
we can observe the effect of the additional time-periodic
damping (the process damping) on the stability charts. The
periodic coefficients G1(t) and G2(t) corresponding to the
various radial immersion ratios are also presented with blue
and red lines, respectively.

It can be observed that modeling the velocity-dependent
cutting force introduces a strong low-speed stability
improvement in the mechanical model of milling opera-
tions with large radial immersion, see the up-milling with

ae/D = 0.8, the full immersion milling, and the down-
milling with ae/D = 0.7. In these cases, the time-periodic
damping coefficient G2(t) is mostly positive. Accordingly,
the stability lobes for ρ = 0.01 shift upwards at low cut-
ting speeds compared to the case ρ = 0, and there is a
small improvement in stability at large cutting speeds as
well. Thus, the velocity-dependent cutting force model cap-
tures the low-speed stability improvement for large radial
immersion ratios.

However, as the radial immersion ratio is decreased (see
the up-milling with ae/D = 0.6 and the down-milling
with ae/D = 0.5), the low-speed stability improvement
becomes less pronounced. The time-periodic coefficient
G2(t) becomes negative for a larger portion of the period
and the growth of the stable region is smaller. Decreasing
the radial immersion ratio further, the low-speed stability
improvement vanishes, see the cases of up-milling with
ae/D = 0.2 and down-milling with ae/D = 0.1. In these
cases, the time-periodic damping coefficient G2(t) is almost
never positive. Correspondingly, the stability lobes for ρ =
0.01 start to shift downwards at low cutting speeds com-
pared to the standard models with ρ = 0. Finally, for very
low radial immersions (up-milling with ae/D = 0.02 and
down-milling with ae/D = 0.02), the coefficient G2(t)

is never positive, and the stability lobes shift towards zero
depth of cut at low cutting speeds when ρ = 0.01. This indi-
cates the presence of negative process damping at low radial
immersions.

The negative process damping contradicts experimental
observations [3–10] that the stable region is larger at low
cutting speeds. Therefore, the most important conclusion
of this paper is that this kind of velocity-dependent cutting
force model is not always able to capture the phenomenon
of low-speed stability improvement. Although the model
results in a positive process damping and improved low-
speed stability for turning processes and milling with large
radial immersion, it gives a negative process damping with
a decrease in stability for low radial immersion milling.

6 Geometric illustration of the process damping
force

In this section, we give a geometric illustration to explain
why the model results in a negative process damping for
milling with low radial immersion. We construct the addi-
tional process damping force originating in the velocity-
dependent chip thickness expression and the cutting force
projections. We demonstrate the results for a single tooth
of the mill, hence we drop the subscript j . We consider
those time instants where the tooth is engaged in cutting
(g(t) ≡ 1), and assume a linear cutting force characteristics
(q = 1). For simplicity, we also omit the argument t .
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Fig. 4 Time-periodic coefficients of the governing equation of milling (blue: stiffness, G1(t), red: damping, G2(t)) and the corresponding
stability lobe diagrams (ρ = 0: standard milling model, ρ = 0.01: velocity-dependent model with process damping)
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Let F̃ and F denote the nominal cutting force calculated
with the standard chip thickness expression h̃ and the actual
one obtained from the velocity-dependent model with chip
thickness h, respectively. Let their difference be denoted by
�F = F − F̃. We introduce chip thickness vectors with a
similar notation: h̃ = h̃r̃, h = hr, and �h = h − h̃, see
Fig. 5 for rake angle αr. Note that the rake angle αr indi-
cated in the figure was chosen only for illustration purposes.
The cutting force expression itself is independent of the rake
angle, since only the direction of the actual cutting veloc-
ity is taken into account when calculating the cutting force.
Similarly, changes in the tool’s rake and flank face due to
tool wear do not modify the cutting force expression of this
model. The tool geometry may affect only the cutting-force
coefficients Kt and Kr.

According to Eq. 13, assuming a single tooth in cut
with linear cutting force characteristics, the cutting-force
components become

F̃r̃ = Kraph̃ , F̃t̃ = Ktaph̃ ,

Fr = Kraph , Ft = Ktaph . (25)

Since F̃r̃ /F̃t̃ = Fr/Ft = Kr/Kt, the angle between r̃ and
F̃ and between r and F are both equal to γ = arctan(Kt/Kr).
Besides, since Fr/F̃r̃ = Ft/F̃t̃ = h/h̃, the vector triangles
(h, h̃, �h) and (F, F̃, �F) are similar. Consequently, the
additional force �F can be plotted by rotating �h clockwise
with angle γ .

The additional force �F is responsible for the process
damping effect in our model. If the force points to the right,

then its x-directional component �Fx is positive and a pos-
itive process damping is introduced in the system. If �F
points to the left, a negative process damping term appears
in the governing equation.

According to Fig. 5, the process damping force �F
forms an angle γ − (π − 2ϕ̃) − α with the y axis, where
α = ϕ̃ − ϕ is the angle between the chip thickness vec-
tors h̃ and h or, equivalently, between the nominal and the
actual cutting velocities ṽ and v. Considering small vibra-
tion velocities (small ẋ), the angle α is also small and can
be neglected compared to γ . Therefore, the angle of �F
can be approximated by γ − (π − 2ϕ̃). When the process
damping is positive, the force �F points to the right and the
inequality

0 < γ − (π −2ϕ̃) < π (26)

holds. Thus, the process damping is positive if

ϕex,cr < ϕ̃ < ϕen,cr . (27)

where ϕex,cr = π/2 − γ /2 and ϕen,cr = π − γ /2 are the
critical exit and enter immersion angles.

For low radial immersions, when ϕex < ϕex,cr in up-
milling or when ϕen > ϕen,cr in down-milling, inequal-
ity (27) does not hold when the tooth is cutting. Therefore,
the process damping is always negative. Note that this
additional negative damping does not necessarily mean
instability for systems with periodic coefficients (parametric
excitation), but, as rule of thumb, one can say that the sta-
ble region is usually smaller for negative periodic damping
coefficients than for positive ones.

Fig. 5 Direction of the process
damping force
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Fig. 6 Direction of the process damping force �F for various angular positions of the cutting tooth
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In the example of Section 5, Kr/Kt = 0.3 and γ =
arctan(Kt/Kr) = 73◦, which yields ϕex,cr = 53◦ and
ϕen,cr = 143◦. The direction of the process damping force
in this example is illustrated for five different angular posi-
tions of the tooth assuming zero rake angle in Fig. 6. In the
figure, the vibration velocity ẋ and the angle α are enlarged
for better visibility, they are no longer small, which slightly
modifies the critical enter and exit immersion angles ϕex,cr

and ϕen,cr. When ϕ̃ = 45◦ < ϕex,cr (see Fig. 6a) and when
ϕ̃ = 160◦ > ϕen,cr (see Fig. 6e), the force �F points to the
left implying a negative process damping. For ϕ̃ = ϕex,cr

(see Fig. 6b) and ϕ̃ = ϕen,cr (see Fig. 6d), the force �F is
vertical, hence the process damping term vanishes. When
ϕex,cr < ϕ̃ = 90◦ < ϕen,cr (see Fig. 6c), the force �F points
to the right indicating a positive process damping.

Recall that the special case of turning operations is
obtained by considering a single tooth permanently in cut at
position ϕ̃ = 90◦. Based on Fig. 6c, the velocity-dependent
cutting force model indeed introduces a strong positive
process damping for turning operations. In this case, the
vibration velocity ẋ is perpendicular to the nominal cutting
velocity ṽ. However, for low radial immersion milling, when
ϕ̃ is close to 0◦ or to 180◦, and the vibration velocity ẋ is
almost parallel to the nominal cutting velocity ṽ, one gets a
negative process damping.

Finally, a critical immersion ratio can also be deter-
mined, below which always a negative process damping
occurs. According to Eqs. 15 and 27, the process damping
coefficient is never positive for up-milling with radial
immersion ratio ae/D < (1 − cos ϕex,cr)/2 and for down-
milling with ae/D < (1 + cos ϕen,cr)/2. In the above exam-
ple, the critical cases correspond to ae/D ≈ 0.2 up-milling
and ae/D ≈ 0.1 down-milling. In Fig. 4, the stability lobe
diagrams are presented for these radial immersion ratios for
a four-fluted tool (N = 4) with nonlinear cutting force
expression (q = 3/4). We can see that indeed the process
damping and the low-speed stability improvement vanish
approximately at these radial immersion ratios.

7 Conclusions

In this paper, we investigated the process damping effect
for the single-degree-of-freedom model of milling by con-
sidering a velocity-dependent cutting force model following
[4, 14, 18]. We took into account that the cutting veloc-
ity is affected by the vibration velocity during chatter. The
direction of the actual cutting velocity was used to cal-
culate the chip thickness and to project the cutting force
to tangential and radial directions. Using the resulting
velocity-dependent cutting force expression, the linearized
equation of motion involves an additional time-periodic

damping term, which is inversely proportional to the cut-
ting speed. This additional damping is a kind of process
damping, which may be responsible for low-speed stability
improvement.

Analyzing the linear stability of the governing time-
periodic delay-differential equation, we computed the sta-
bility lobe diagrams of the system and arrived at an impor-
tant observation. The experimentally observed phenomenon
[3–10] that the stability lobes shift towards higher depths
of cut at low cutting speeds is often modeled by adding
a positive constant process damping term to the govern-
ing equation, which is inversely proportional to the cutting
speed. This term can be explained by a cutting force model
with velocity-dependent chip thickness expression and force
projections in case of turning operations [4, 14]. This expla-
nation is also valid for milling operations with large radial
immersion. However, the velocity-dependency introduces a
periodically varying negative process damping for milling
with low radial immersion. In this case, there is a decrease
in the maximum stable depth of cut at low cutting speeds,
which contradicts widely accepted experimental observa-
tions. Namely, a significant amount of experimental data
has been reported in the literature, which verifies the exis-
tence of the low-speed stability improvement, that is, the
increase of the maximum stable depth of cut at decreas-
ing spindle speeds [3–10, 14]. However, the authors are
not aware of publications where the decrease of the low-
speed stability was shown by experiments. Consequently,
the velocity-dependent cutting force does not provide a
proper explanation to the low-speed stability improvement
for all machining operations, and an extended model is
needed for low radial immersion milling.

The improved stability at low cutting speeds can be
attributed to other physical phenomena. One candidate is
the interference between the tool’s flank face and the wavy
surface of the workpiece [3–6, 8–12, 15]. The flank contact
force is modeled as a damping inversely proportional to the
cutting speed as a first approximation, which gives a similar
constant process damping term in the governing equation.
Note, however, that the contact between the tool’s flank and
the workpiece is intermittent, it depends on the vibrations
of the tool-workpiece system, which in fact yields compli-
cated nonsmooth dynamics [12]. Stability properties of such
nonsmooth systems can hardly be captured by linear models
such as the one with constant process damping term.

Another possible explanation of the low-speed stability
improvement is the so-called short regenerative effect [16,
17]. These models account for the fact that the cutting force
is the resultant of a force system distributed along the tool’s
rake face [34, 35]. The governing equation of motion is a
delay-differential equation where a short distributed delay
is superimposed on the large regenerative point delay. The
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additional short delay originates in the fact that the chip
needs a small amount of time to slip along the rake face of
the tool. The additional short delay increases the maximum
stable depth of cut at low cutting speeds for turning models
[16, 17] and also for milling with any radial immersion [36].
Therefore, the short regenerative effect provides an appro-
priate model to explain the improved low-speed stability
properties observed by experiments.
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